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1. Introduction

Rough set theory, initiated by Pawlak [37, 38], is an excellent tool to handle vagueness and uncertainty
in data analysis. It is an efficient method employed in many areas: uncertainty reasoning [11, 43], rule
extraction [1, 53], feature selection [7, 14, 15, 26, 29, 52], granular computing [3, 27, 31, 41, 42, 58,
59, 62], knowledge reduction [22-24, 28, 46], and others [6, 8, 10, 54, 60, 68, 70, 73].

It is obvious that an equivalence relation or a partition of the universe plays an important role
in Pawlak rough set model. However, the requirement of an equivalence relation is a very restric-
tive condition for many real-world applications. To overcome the limitation, many researchers have
generalized the Pawlak rough set theory. Several meaningful and interesting extensions of equiva-
lence relation have been proposed, such as similarity relation [51, 66], tolerance relation [50, 57, 66],
neighborhood systems [62], fuzzy systems [55, 56]. In 1983, Zakowski first proposed the notion of
covering based on rough set approximations [69]. A pair of lower and upper approximation operators
are defined by a straightforward generalization of the Pawlak definition. Since then, a great number
of diversity lower and upper approximation operators have been proposed [2, 5, 13, 32-35, 45, 49,
63, 69, 72, 74-78]. Yao studied dual approximation operators by using coverings produced by the
predecessor and/or successor neighborhoods of serial or inverse serial binary relations [64, 65]. By
modifying Zakowski’s definition, Pomykala investigated two pairs of dual approximation operators
and studied many properties of covering rough sets based on tolerance relations [44]. In addition, Zhu
et al. researched six types of approximation operators and investigated their properties. Furthermore,
the relationships of them have been discussed [74-78]. Mordeson examined the pair of Zakowski
approximation operators by considering semi-reduced covering [36]. From the above, we can see
that many excellent results of CRS theory have been proposed. These results enrich and extend the
applications of rough set theory.

Since Pawlak proposed the theory of rough sets in 1982, the researches of operation properties and
algebraic properties on rough sets have been started. An algebraic approach to rough set theory was
first presented by Iwiński in 1987 [16]. Since then, substantial conclusions on operation properties and
algebraic properties of rough sets have been done [4, 9, 12, 17-21, 39, 40, 48, 66, 67, 71]. However,
it is still an open problem regarding the operation properties of CRS. Therefore, the main objective of
this paper is to study the operation properties of CRS and further study the corresponding algebraic
properties. Throughout the research, some new conclusions and achievements presented in the paper
may enrich the theory of CRS.

The rest of this paper is organized as follows. In Section 2, we briefly review some basic concepts
of Pawlak rough sets and covering rough sets. In Section 3, we discuss the properties of the first
type of CRS. Especially, we study the operation properties of the first type of covering rough sets with
respect to minimally unary covering. In order to compute the intersection and union of CRS, two algo-
rithms are constructed and an example is employed to illustrate the effectiveness of these algorithms.
In Section 4, we discuss the properties of the second type of CRS. More importantly, we study the op-
eration properties of the second type of covering rough sets with respect to maximally unary covering.
Meanwhile, some corresponding algorithms are explored. In Section 5, as an application of operation
properties of CRS, some meaningful algebraic properties of CRS are further studied. Finally, Section
6 concludes this study.
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2. Preliminaries

The following recalls some necessary concepts and preliminaries of Pawlak rough sets and covering,
which are required in the sequel of our work. More details can be seen in references [30, 38, 74].

2.1. Pawlak rough sets

(U,R) is referred to as an approximation space, where U is a non-empty finite set(also called the
universe of discourse). denote [x]R = {y|(x, y) ∈ R}, U/R = {[x]R|x ∈ U}, then [x]R is called the
equivalence class of x and the quotient set U/R is called the equivalence class set of U .

Definition 2.1.1 Let (U,R) be an approximation space. For each X ⊆ U ,

R(X) = {x ∈ U | [x]R ⊆ X}, R(X) = {x ∈ U | [x]R ∩X 6= ∅}

are called Pawlak lower and upper approximations of X with respect to the equivalence relation R,
respectively.

Proposition 2.1.1 Let ∅ be the empty set and ∼ X the complement of X in U . Pawlak rough sets
have the following properties.

(1L) R(U) = U ; (1H) R(U) = U ;
(2L) R(∅) = ∅; (2H) R(∅) = ∅;

(3L) R(X) ⊆ X; (3H) X ⊆ R(X);

(4L) R(R(X)) = R(X); (4H) R(R(X)) = R(X);

(5L) R(X ∩ Y ) = R(X) ∩R(Y ); (5H) R(X ∪ Y ) = R(X) ∪R(Y );

(6L) X ⊆ Y ⇒ R(X) ⊆ R(Y ); (6H) X ⊆ Y ⇒ R(X) ⊆ R(Y );

(7L) R(∼ X) =∼ R(X); (7H) R(∼ X) =∼ R(X);

(8L) ∀K ∈ U/R,R(K) = K; (8H) ∀K ∈ U/R,R(K) = K.

2.2. Covering rough sets

In this subsection, we list some basic concepts about covering to be used in this paper.

Definition 2.2.1 Let U be the universe and C a family of nonempty subsets of U . If ∪C = U , then C
is called a covering of U . The ordered pair (U, C) is called a covering approximation space.

Definition 2.2.2 Suppose C is a covering of U . A neighborhood system Cx of x is defined by:

Cx = {K ∈ C|x ∈ K}.

Definition 2.2.3 Let C be a covering of U and x ∈ U , the following two neighborhoods of x induced
from the neighborhood system Cx are defined by:

n0(Cx) = ∩{K|K ∈ Cx}, n1(Cx) = ∪{K|K ∈ Cx}.
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The minimum neighborhood n0(Cx) and the maximum neighborhood n1(Cx) have been proposed
and investigated by many researchers [33, 44, 45, 69, 70]. n0(Cx) is called the neighborhood of x by
Zhu [66, 67] and n1(Cx) is called the indiscernibility neighborhood of x by Pomykala [44, 45].

Definition 2.2.4 Suppose Cx is the neighborhood system of x induced by a covering C. The minimal
description and maximal description of x are defined, respectively, by:

md(x) = {K ∈ Cx|(∀S ∈ Cx)(S ⊆ K ⇒ K = S)},
MD(x) = {K ∈ Cx|(∀S ∈ Cx)(K ⊆ S ⇒ K = S)}.

The minimal description md(x) and the maximal description Md(x) of x have been proposed and
studied by many authors[2,44,74].

Definition 2.2.5 Let C be a covering ofU . C is called minimally unary covering, if ∀x ∈ U , |md(x)| =
1. Meanwhile, the ordered pair (U, C) is called a minimally unary covering approximation space.

In addition, if C is a minimally unary covering, then it is clear that md(x) = {n0(Cx)}, and for
each K ∈ Cx, we have that n0(Cx) ⊆ K. Moreover, we denote Cmin = {n0(Cx)|x ∈ U}.

In the following, we will employ an example to illustrate the Definition 2.2.5.

Example 2.2.1 A covering approximation space about hobby is given in Table 1. The universe U =
{x1, x2, · · · , x6} stands for six person. “Yes” means that the person likes the hobby. “No” means that
the person does not like the hobby.

Table 1. A covering approximation space about hobby

U Music Sports Drawing Reading

x1 Yes No No No
x2 Yes Yes Yes No
x3 No Yes No No
x4 No No No Yes
x5 Yes Yes Yes No
x6 No No No Yes

Denote KM = {x1, x2, x5}, KS = {x2, x3, x5}, KD = {x2, x5}, KR = {x4, x6}. Clearly, C =
{KM ,KS ,KD,KR} is a minimally unary covering of U and (U, C) is a minimally unary covering
approximation space. Moreover, n0(Cx1) = {x1, x2, x5}, n0(Cx2) = n0(Cx5) = {x2, x5}, n0(Cx3) =
{x2, x3, x5}, n0(Cx4) = n0(Cx6) = {x4, x6}. Therefore, Cmin = {{x1, x2, x5}, {x2, x3, x5}, {x2, x5},
{x4, x6}}.

Definition 2.2.6 Let C be a covering of U . C is called maximally unary covering, if ∀x ∈ U ,
|Md(x)| = 1. Meanwhile, the ordered pair (U, C) is called a maximally unary covering approxi-
mation space.

In addition, if C is a maximally unary covering, then it is clear that Md(x) = {n1(Cx)}, and for
each K ∈ Cx, we have that K ⊆ n1(Cx). Moreover, we denote Cmax = {n1(Cx)|x ∈ U}.
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Similarly, an example is presented to illustrate the Definition 2.2.6.

Example 2.2.2 The universe U = {x1, x2, · · · , x6} stands for six students. A covering of U about
course is given in Table 2. “Yes” means that the student has studied the course. “No” means that the
student still does not study the course.

Table 2. A covering about course

U History Physics Chemistry Biology Geography

x1 Yes No No No No
x2 No Yes Yes No No
x3 No No Yes Yes No
x4 No No Yes Yes Yes
x5 Yes No No No No
x6 No No Yes No Yes

Denote KH = {x1, x5}, KP = {x2}, KC = {x2, x3, x4, x6}, KB = {x3, x4}, KG = {x4, x6}.
Clearly, C = {KH ,KP ,KC ,KB,KG} is a maximally unary covering of U and (U, C) is a maxi-
mally unary covering approximation space. Moreover, n1(Cx1) = n1(Cx5) = {x1, x5}, n1(Cx2) =
n1(Cx3) = n1(Cx4) = n1(Cx6) = {x2, x3, x4, x6}. Therefore, we have that Cmax = {{x1, x5},
{x2, x3, x4, x6}}.

Definition 2.2.7 Let (U, C) be a covering approximation space. For each X ⊆ U ,

C(X) = ∪{K ∈ C|K ⊆ X}, C(X) =∼ C(∼ X).

are respectively called the first type of lower and upper covering approximations of X .
The ordered pair (C(X), C(X)) is called the first type of covering rough set of X . Clearly,

CF = {(C(X), C(X)) | X ⊆ U} is a set of all the first type of covering rough sets.
Meanwhile

C(X) = ∪{K ∈ C|K ∩X 6= ∅}, C(X) =∼ C(∼ X).

are respectively called the second type of lower and upper covering approximations of X .
The ordered pair (C(X), C(X)) is called the second type of covering rough set of X . Therefore,

CS = {(C(X), C(X)|X ⊆ U} is a set of all the second type of covering rough sets.
The two pairs of covering rough sets listed in Definition 2.2.7 can go back to the papers by

Pomykala [44,45]. But the explicit definition in terms of dual pairs has been given by Yao [64].

3. First type of covering rough sets

3.1. Properties of first type of covering approximation operators

In this subsection, we will study some basic properties of the first type of covering approximation
operators in a covering approximation space.
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According to the properties of Pawlak rough sets listed in Proposition 2.1.1, we have the following
results.

Proposition 3.1.1 [47] Let (U, C) be a covering approximation space and X,Y ⊆ U . Then, the
following properties hold.

(1) C(U) = C(U) = U , C(∅) = C(∅) = ∅;
(2) C(X) ⊆ X ⊆ C(X);

(3) X ⊆ Y ⇒ C(X) ⊆ C(Y ), C(X) ⊆ C(Y );

(4) C(C(X) = C(X), C(C(X) = C(X);

(5) C(∼ X) =∼ C(X), C(∼ X) =∼ C(X).

Remark 3.1.1 The properties (5L) and (5H) listed in Proposition 2.1.1 do not hold for the first type of
covering rough sets. A counterexample is given as follows.

Example 3.1.1 LetU = {x1, x2, · · · , x6},K1 = {x1, x2, x3},K2 = {x1, x4, x5},K3 = {x3, x5, x6}.
Clearly, C = {K1,K2,K3} is a covering of U . For X1 = {x1, x3, x5, x6}, Y1 = {x1, x2, x3, x4, x5},
we have that C(X1 ∩ Y1) = ∅. But C(X1) ∩ C(Y1) = {x3, x5}. Hence C(X1 ∩ Y1) 6= C(X1) ∩
C(Y1). For X2 = {x6}, Y2 = {x2, x4}, we have that C(X2 ∪ Y2) = U . But C(X2) ∪ C(Y2) =
{x1, x2, x4, x6}. Hence C(X2 ∪ Y2) 6= C(X2) ∪ C(Y2).
In the following, we give a condition under which the properties (5L) and (5H) hold for the first type
of covering rough sets.

Proposition 3.1.2 Let (U, C) be a minimally unary covering approximation space and X,Y ⊆ U .
Then, the following properties hold.

(1)C(X ∩ Y ) = C(X) ∩ C(Y )

(2)C(X ∪ Y ) = C(X) ∪ C(Y )

Proof:
(1) (⇒) It is evident by Proposition 3.1.1.

(⇐) For each x ∈ C(X) ∩ C(Y ), we have x ∈ C(X) and x ∈ C(Y ). It can be found that
n0(Cx) ⊆ X and n0(Cx) ⊆ Y . Therefore, n0(Cx) ⊆ X ∩ Y . By Definition 2.2.7, we have that
x ∈ C(X ∩ Y ), i.e., C(X) ∩ C(Y ) ⊆ C(X ∩ Y ).

(2) The property can be proved similarly to (1). ut

By Definition 2.2.7, the following result is obvious.

Proposition 3.1.3 Let (U, C) be a minimally unary covering approximation space and n0(Cx) ∈ Cmin.
Then, n0(Cx) = C(n0(Cx)).

Proposition 3.1.4 Let (U, C) be a minimally unary covering approximation space and X,Y ⊆ U .
Then, the following properties hold.

(1)C(C(X) ∩ C(Y )) = C(X) ∩ C(Y ); (2)C(C(X) ∪ C(Y )) = C(X) ∪ C(Y )

(3)C(C(X) ∩ C(Y )) = C(X) ∩ C(Y ); (4)C(C(X) ∪ C(Y )) = C(X) ∪ C(Y )
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Proof:
(1) (⇒) It is evident by Proposition 3.1.1.

(⇐) For each x ∈ C(X), we have that x ∈ n0(Cx) ⊆ X . By Proposition 3.1.3, it follows that
x ∈ n0(Cx) = C(n0(Cx)) ⊆ C(X). Similarly, for each x ∈ C(Y ), we have that x ∈ n0(Cx) ⊆ C(Y ).
Hence, for each x ∈ C(X)∩C(Y ), it follows that x ∈ n0(Cx) ⊆ C(X)∩C(Y ). By Definition 2.2.7,
it can be obtained that x ∈ C(C(X)∩C(Y )). That is to say that C(X)∩C(Y ) ⊆ C(C(X)∩C(Y )).

(2) The property can be proved similarly to (1).
(3) This item can be proved by Definition 2.2.7 and item (1).
(4) This item can be proved by Definition 2.2.7 and item (2). ut

Proposition 3.1.5 Let (U, C) be a minimally unary covering approximation space, x ∈ U andX ⊆ U .
If n0(Cx) = {x} and x ∈ C(X), then x ∈ C(X).

Proof:
Since x ∈ C(X), we have that x ∈ X by Definition 2.2.7. That is to say that {x} = n0(Cx) ⊆ X .
Then, it follows that x ∈ C(X). ut

3.2. Operation properties of first type of covering rough sets

In this section, we will research the operation properties of the first type of covering rough sets. We
first propose the concept of complement operation of covering rough sets.

Definition 3.2.1 Let (U, C) be a covering approximation space. For each (C(X), C(X)) ∈ CF , the
complement of it is defined as:

∼ (C(X), C(X)) = (∼ C(X),∼ C(X))

Remark 3.2.1 According to Proposition 3.1.1, we have ∼ (C(X), C(X)) = (∼ C(X),∼ C(X)) =
(C(∼ X), C(∼ X)). In other words, the complement of CRS of X is the CRS of ∼ X .

Definition 3.2.2 Let (U, C) be a covering approximation space. For ∀(C(X), C(X)), (C(Y ), C(Y )) ∈
CF , the intersection and union of them are defined as:

(1) (C(X), C(X)) ∩ (C(Y ), C(Y )) = (C(X) ∩ C(Y ), C(X) ∩ C(Y )).

(2) (C(X), C(X)) ∪ (C(Y ), C(Y )) = (C(X) ∪ C(Y ), C(X) ∪ C(Y )).

Is CF closed under set intersection and union defined above? we will present an example to answer
the question.

Example 3.2.1 Let U = {x1, x2, · · · , x6}, K1 = {x1, x2, x3}, K2 = {x3, x5}, K3 = {x4, x5, x6}.
Clearly, C = {K1,K2,K3} is a covering of U . ForX = {x1, x2, x3}, Y = {x3, x4, x5}, we have that
C(X) ∩ C(Y ) = {x3}, C(X) ∩ C(Y ) = {x1, x2, x3}. It is obvious that there doesn’t exist V ⊆ U
such that (C(V ), C(V )) = (C(X), C(X)) ∩ (C(Y ), C(Y )) = (C(X) ∩ C(Y ), C(X) ∩ C(Y )).
Similarly, for X

′
= {x1, x2, x6}, Y

′
= {x4, x5, x6}. It is clear that there doesn’t exist W ⊆ U such

that (C(W ), C(W )) = (C(X
′
), C(X

′
)) ∪ (C(Y

′
), C(Y

′
)) = (C(X

′
) ∪ C(Y

′
), C(X

′
) ∪ C(Y

′
)).
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Example 3.2.1 shows that CF is not closed under set intersection and union. In order to solve the
question listed above, we will raise the following two questions:

(Q1) Does there exist a condition under which CF is closed under set intersection and union;
(Q2) If there exists the condition presented by (Q1). Then for ∀(C(X), C(X)), (C(Y ), C(Y )) ∈

CF , can we compute two subsets V,W ⊆ U such that (C(V ), C(V )) = (C(X), C(X)) ∩ (C(Y ),
C(Y )) and (C(W ), C(W )) = (C(X), C(X)) ∪ (C(Y ), C(Y ))?

In what follows, we will devote to solving the questions (Q1) and (Q2).
Let (U, C) be a minimally unary covering approximation space and for ∀x, y ∈ U , we have Kmin

x =
Kmin

y or Kmin
x ∩Kmin

y = ∅. Denote
A = A2/A1, where A1 = C(X) ∩ C(Y ), A2 = C(X) ∩ C(Y ). A = {n0(Cx)|x ∈ A,n0(Cx) ∩

A1 = ∅}. A′ = {n0(Cxi)|xi ∈ A, i = 1, 2, · · · ,m}, whereA′ satisfies the following three conditions.

(1) For each n0(Cxi) ∈ A
′
, where i = 1, 2, · · · ,m, we have n0(Cxi) ∈ A;

(2) For each n0(Cxi), n0(Cxj ) ∈ A
′
, where i 6= j; i, j = 1, 2, · · · ,m, we have that n0(Cxi) ∩

n0(Cxj ) = ∅;
(3) For each n0(Cx) ∈ A, there exists n0(Cxi) ∈ A

′
such that n0(Cxi) ⊆ Kmin

x .
Furthermore, denote P = {xi|n0(Cxi) ∈ A

′
, i = 1, 2, · · · ,m} and V = A1 ∪ P .

On the other hand, denote B = B2/B1, where B1 = C(X) ∪ C(Y ), B2 = C(X) ∪ C(Y ).
B = {n0(Cx)|x ∈ B,n0(Cx)∩B1 = ∅}. B′ = {n0(Cxj )|xj ∈ B, j = 1, 2, · · · , n}, where B′ satisfies
the following three conditions.

(1) For each n0(Cxj ) ∈ B
′
, where j = 1, 2, · · · , n, we have n0(Cxj ) ∈ B;

(2) For each n0(Cxi), n0(Cxj ) ∈ B
′
, where i 6= j; i, j = 1, 2, · · · , n, we have that n0(Cxi) ∩

n0(Cxj ) = ∅;
(3) For each n0(Cx) ∈ B, there exists Kmin

xj
∈ B′ such that n0(Cxj ) ⊆ n0(Cx).

Furthermore, denote Q = {xj |n0(Cx) ∈ B′ , j = 1, 2, · · · , n} and W = B1 ∪Q.
According to the approach presented above, we can compute two subsets V,W ⊆ U such that the
following properties hold.

Proposition 3.2.1 Let (U, C) be a minimally unary covering approximation space and for ∀x, y ∈ U ,
we have Kmin

x = Kmin
y or Kmin

x ∩Kmin
y = ∅. For V,W defined above, then

(1) C(V ) = C(X) ∩ C(Y ); (2) C(V ) = C(X) ∩ C(Y );
(3) C(W ) = C(X) ∪ C(Y ); (4) C(W ) = C(X) ∪ C(Y ).

Proof:
(1) (⇒) For each x ∈ C(V ), we have that n0(Cx) ⊆ V . By the construction of V and Proposition
3.1.5, it follows that x ∈ n0(Cx) ⊆ C(X) ∩ C(Y ). Hence, C(V ) ⊆ C(X) ∩ C(Y ).

(⇐) It is clear that C(X) ∩ C(Y ) ⊆ V . By Proposition 3.1.1 and Proposition 3.1.4, we have that
C(X) ∩ C(Y ) = C(C(X) ∩ C(Y )) ⊆ C(V ). i.e., C(X) ∩ C(Y ) ⊆ C(V ).

(2) (⇒) It is obvious that V ⊆ C(X) ∩ C(Y ). By Proposition 3.1.1 and Proposition 3.1.4, we
have that C(V ) ⊆ C(C(X) ∩ C(Y )) = C(X) ∩ C(Y ). i.e., C(V ) ⊆ C(X) ∩ C(Y ).

(⇐) It is evident by Definition 2.2.7 and the construction of V .
(3) This item can be proved similarly to (1).
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(4) The property can be proved similarly to (2). ut

In order to better understand Proposition 3.2.1 and the relationship between subset V and subset
W , the following remark is shown:

Remark 3.2.2 (1) If C is a minimally unary covering, there must exist two subsets V,W ⊆ U such
that (C(V ), C(V )) = (C(X), C(X)) ∩ (C(Y ), C(Y )) = (C(X) ∩ C(Y ), C(X) ∩ C(Y )) and
(C(W ), C(W )) = (C(X), C(X)) ∪ (C(Y ), C(Y )) = (C(X) ∪ C(Y ), C(X) ∪ C(Y )).

(2) According to the construction of V,W , we have C(X) ∩ C(Y ) ⊆ V ⊆ C(X) ∩ C(Y ) and
C(X) ∪ C(Y ) ⊆W ⊆ C(X) ∪ C(Y ).

(3) For each subset V , we can find a subset W such that V ⊆W .
To apply this approach to practical issues, we here present two algorithms for computing subsets V
and W .

Algorithm 1: An algorithm for computing subset V
Input : A minimally unary covering approximation space (U, C) and X,Y ⊆ U ;
Output : Subset V .

1 begin
2 Compute C(X) ∩ C(Y ), C(X) ∩ C(Y ), (C(X) ∩ C(Y ))/(C(X) ∩ C(Y ));
3 Compute n0(Cx1), n0(Cx2), · · · , n0(Cxs);
4 K ← ∅;
5 for i = 1 : s; i <= s; i+ + do
6 if n0(Cxi) ∩ (C(X) ∩ C(Y )) = ∅ then
7 K ← K ∪ {xi};
8 end
9 end

10 n0(Cx)← ∅;Kmin ← ∅;T ← ∅;
11 if |K| 6= 0 then
12 for j = 1 : |K|; j <= |K|; j + + do
13 for each x ∈ K do
14 if n0(Cx) ∩ n0(Cxj ) 6= ∅ then
15 n0(Cx)← n0(Cx) ∩ n0(Cxj );
16 Kmin ← Kmin ∪ n0(Cxj );
17 T ← T ∪ {x};
18 end
19 K ← K/Kmin;
20 end
21 end
22 end
23 Compute (C(X) ∩ C(Y )) ∩ T ; // V = (C(X) ∩ C(Y )) ∩ T by the construction of V ;
24 end
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In the following, an algorithm for computing subset W presented above are constructed.

Algorithm 2: An algorithm for computing subset W
Input : A minimally unary covering approximation space (U, C) and X,Y ⊆ U ;
Output : Subset W .

1 begin
2 Compute C(X) ∪ C(Y ), C(X) ∪ C(Y ), (C(X) ∪ C(Y ))/(C(X) ∪ C(Y ));
3 Compute n0(Cx1), n0(Cx2), · · · , n0(Cxs);
4 K ← ∅;
5 for i = 1 : s; i <= s; i+ + do
6 if n0(Cxi) ∩ (C(X) ∪ C(Y )) = ∅ then
7 K ← K ∪ {xi};
8 end
9 end

10 n0(Cx)← ∅;Kmin ← ∅;T ← ∅;
11 if |K| 6= 0 then
12 for j = 1 : |K|; j <= |K|; j + + do
13 for each x ∈ K do
14 if n0(Cx) ∩ n0(Cxj ) 6= ∅ then
15 n0(Cx)← n0(Cx) ∩ n0(Cxj );
16 Kmin ← Kmin ∪ n0(Cxj );
17 T ← T ∪ {x};
18 end
19 K ← K/Kmin;
20 end
21 end
22 end
23 Compute (C(X) ∪ C(Y )) ∪ T ; // W = (C(X) ∪ C(Y )) ∪ T by the construction of W ;
24 end

Then, we will employ an example to show the effectiveness of the two algorithms.

Example 3.2.2 Let U = {x1, x2, · · · , x10}, C = {{x1, x2, x3, x4}, {x4}, {x4, x5, x6, x7}, {x8, x9,
x10}}. For X = {x1, x4}, Y = {x4, x5}, let V = {x1, x4, x5},W = {x1, x4, x5}, then we have that

(C(V ), C(V )) = (C(X), C(X)) ∩ (C(Y ), C(Y )) · · · (1)

(C(W ), C(W )) = (C(X), C(X)) ∪ (C(Y ), C(Y )) · · · (2)

It is clear that the selections of V,W satisfying equations (1) and (2) are not unique. For X =
{x1, x4}, Y = {x4, x5}, all the selections of V,W obtained probably by Algorithms 1 and 2 are
shown in Table 3.



Q. Kong and W. Xu / Operation Properties and Algebraic Application of Covering Rough Sets 395

Table 3 All the selections of V,W

X,Y V W

{x1, x4} {x1, x4, x5} {x1, x4, x5}
{x4, x5} {x2, x4, x5} {x2, x4, x5}

{x3, x4, x5} {x3, x4, x5}
{x1, x4, x6} {x1, x4, x6}
{x2, x4, x6} {x2, x4, x6}
{x3, x4, x6} {x3, x4, x6}
{x1, x4, x7} {x1, x4, x7}
{x2, x4, x7} {x2, x4, x7}
{x3, x4, x7} {x3, x4, x7}

Furthermore, for Z = {x5, x8}. Let C = {x5}, D = {x1, x4, x5, x8}, then we have that

(C(C), C(C)) = ((C(X), C(X)) ∪ (C(Y ), C(Y ))) ∩ (C(Z), C(Z)) · · · (3)

(C(D), C(D)) = ((C(X), C(X)) ∩ (C(Y ), C(Y ))) ∪ (C(Z), C(Z)) · · · (4)

Similarly, the selections of C,D which satisfy equations (3) and (4) are also not unique. For
X = {x1, x4}, Y = {x4, x5}, Z = {x1, x5, x6}, all the selections of C,D obtained probably by
Algorithms 1 and 2 are shown in Table 4.

Table 4 All the selections of C,D

X,Y, Z C D

{x1, x4} {x5} {x1, x4, x5, x8} {x2, x4, x5, x8}
{x4, x5} {x6} {x3, x4, x5, x8} {x1, x4, x6, x8}
{x5, x8} {x7} {x2, x4, x6, x8} {x3, x4, x6, x8}

{x1, x4, x7, x8} {x2, x4, x7, x8}
{x3, x4, x7, x8} {x1, x4, x5, x9}
{x2, x4, x5, x9} {x3, x4, x5, x9}
{x1, x4, x6, x9} {x2, x4, x6, x9}
{x3, x4, x6, x9} {x1, x4, x7, x9}
{x2, x4, x7, x9} {x3, x4, x7, x9}
{x1, x4, x5, x10} {x2, x4, x5, x10}
{x3, x4, x5, x10} {x1, x4, x6, x10}
{x2, x4, x6, x10} {x3, x4, x6, x10}
{x1, x4, x7, x10} {x2, x4, x7, x10}
{x3, x4, x7, x10}
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4. Second type of covering rough sets

4.1. Properties of second type of covering approximation operators

In this subsection, we will study the properties of the second type of covering approximation operators
in a covering approximation space.

Proposition 4.1.1 Let (U, C) be a covering approximation space and X ⊆ U . Then we have C(X) =
∩{∼ K|K ∈ C,K * X}.

Proof:
C(X) =∼ C(∼ X) =∼ {∪{K ∈ C|K ∩ (∼ X) 6= ∅}} =∼ {∪{K ∈ C|K * X}} = ∩{∼ {K ∈
C|K * X}} = ∩{∼ K|K ∈ C,K * X}. ut

To illustrate the above proposition, an example is presented as follows.

Example 4.1.1 Let U = {x1, x2, · · · , x6}, C = {{x1, x2}, {x2, x3, x4}, {x4, x5}, {x5, x6}}. For
X = {x5, x6}, according to Proposition 4.1, we have C(X) =∼ {x1, x2} ∩ ∼ {x2, x3, x4} ∩ ∼
{x4, x5} = {x6}.
Similar to Proposition 3.1.1, we have the following results.

Proposition 4.1.2 Let (U, C) be a covering approximation space and X,Y ⊆ U . Then, the following
properties hold.

(1) C(U) = C(U) = U , C(∅) = C(∅) = ∅;
(2) C(X) ⊆ X ⊆ C(X);
(3) X ⊆ Y ⇒ C(X) ⊆ C(Y ), C(X) ⊆ C(Y );
(4) C(X ∩ Y ) = C(X) ∩ C(Y ), C(X ∪ Y ) = C(X) ∪ C(Y );
(5) C(∼ X) =∼ C(X), C(∼ X) =∼ C(X).

Remark 4.1.1 The properties (4L) and (4H) do not hold for the second type of covering rough sets. A
counterexample is shown as follows.

Example 4.1.2 (Continued from Example 4.1) We haveC(C(X)) = ∅ 6= {x6} = C(X), C(C(X)) =
{x2, x3, x4, x5, x6} 6= {x4, x5, x6} = C(X).
Before we explore the properties (4L) and (4H) for the second type of covering rough sets, two lem-
mas will be proposed. The proofs of the two lemmas straightforwardly follow by the notions involved
and are thus omitted.

Lemma 4.1.1 Let (U, C) be a maximally unary covering-based approximation space and n1(Cx),
n1(Cy) ∈ Cmax. Then we have that n1(Cx) ∩ n1(Cy) = ∅ or n1(Cx) = n1(Cy).

Lemma 4.1.2 Let (U, C) be a maximally unary covering-based approximation space and x∈ U,X⊆ U .
Then, the following properties hold.

(1) C(n1(Cx)) = n1(Cx);
(2) C(X) = ∪x∈Xn1(Cx).
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Proposition 4.1.3 Let (U, C) be a maximally unary covering approximation space and X ⊆ U . Then,
the following properties hold.

(1) C(C(X)) = C(X);

(2) C(C(X)) = C(X).

Proof:
(1) By Lemma 4.1.2, we have C(X) = ∪x∈Xn1(Cx). According to Proposition 4.1.2 and Lemma
4.1.2, it follows that C(C(X)) = C(∪x∈Xn1(Cx)) = ∪x∈XC(n1(Cx)) = ∪x∈Xn1(Cx) = C(X).
Hence, C(C(X)) = C(X).

(2) The property can be proved by item (1) and Proposition 4.1.2. ut

Proposition 4.1.4 Let (U, C) be a maximally unary covering approximation space and X,Y ⊆ U .
Then, the following properties hold.

(1) C(C(X) ∩ C(Y )) = C(X) ∩ C(Y ); (2) C(C(X) ∪ C(Y )) = C(X) ∪ C(Y );

(3) C(C(X) ∩ C(Y )) = C(X) ∩ C(Y ); (4) C(C(X) ∪ C(Y )) = C(X) ∪ C(Y ).

Proof:
(1) (⇐) It is easy to prove by Proposition 4.1.2.

(⇒) By Propositions 4.1.2 and 4.1.3, we have C(C(X) ∩ C(Y )) ⊆ C(C(X)) ∩ C(C(Y )) =
C(X) ∩ C(Y ).

(2) By Propositions 4.1.2 and 4.1.3, we have C(C(X) ∪ C(Y )) = C(C(X)) ∪ C(C(Y )) =
C(X) ∪ C(Y ).

(3) This item can be proved similarly to (2).
(4) This item can be proved similarly to (1). ut

Similar to Proposition 3.1.5, we have the following result.

Proposition 4.1.5 Let (U, C) be a maximally unary covering approximation space, x ∈ U and X ⊆
U . If Kmax

x = {x} and x ∈ C(X), then x ∈ C(X).

4.2. Operation properties of second type of CRS

In this section, we will research the operation properties of the second type of covering rough sets.
Clearly, according to Proposition 4.1.2, CS is closed under set complement defined by Definition

3.2.1.
Is CS closed under set intersection and union defined by Definition 3.2.2? we will present an

example to answer the question.

Example 4.2.1 Let U = {x1, x2, · · · , x6}, C = {{x1, x2, x3}, {x3, x5}, {x4, x5, x6}} be a cov-
ering of U . For X = {x1, x2, x3}, Y = {x4, x5}, we have that C(X) = {x1, x2}, C(X) =
{x1, x2, x3, x5}, C(Y ) = ∅, C(Y ) = {x3, x4, x5, x6}. It is obvious that there doesn’t exist V ⊆ U
such that (C(V ), C(V )) = (C(X), C(X)) ∩ (C(Y ), C(Y )) = (C(X) ∩ C(Y ), C(X) ∩ C(Y )).
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Meanwhile, for X
′

= {x1, x2, x3, x6}, Y
′

= {x4, x5, x6}. It is clear that there doesn’t exist W ⊆
U such that (C(W ), C(W )) = (C(X

′
), C(X

′
)) ∪ (C(Y

′
), C(Y

′
)) = (C(X

′
) ∪ C(Y

′
), C(X

′
) ∪

C(Y
′
)).

Example 4.2.1 tells us that CS is not closed under set intersection and union. Therefore, we can raise
the following two questions:

(Q1) Does there exist a condition under which CS is closed under set intersection and union;
(Q2) If there exists the condition shown by (Q1). Then for ∀(C(X), C(X)), (C(Y ), C(Y )) ∈ CS ,

can we compute two subsets V,W ⊆ U such that (C(V ), C(V )) = (C(X), C(X)) ∩ (C(Y ), C(Y ))
and (C(W ), C(W )) = (C(X), C(X)) ∪ (C(Y ), C(Y ))?

In the following, we will devote to solving the questions (Q1) and (Q2).

Let (U, C) be a maximally unary covering approximation space and X,Y ⊆ U . Denote
A = A2/A1, where A1 = C(X) ∩ C(Y ), A2 = C(X) ∩ C(Y ).
A = {n1(Cx)|x ∈ A,n1(Cx) ∩A1 = ∅}.
A′ = {n1(Cxi)|xi ∈ A, i = 1, 2, · · · ,m}, where A′ satisfies the following three conditions.
(1) For each n1(Cx) ∈ A′ , where i = 1, 2, · · · ,m, we have n1(Cx) ∈ A.
(2) For each n1(Cxi), n1(Cxj ) ∈ A

′
, where i 6= j; i, j = 1, 2, · · · ,m, we have that n1(Cxi) ∩

n1(Cxj ) = ∅.
(3) For each n1(Cx) ∈ A, there exists n1(Cxi) ∈ A

′
such that n1(Cxi) = n1(Cx).

Furthermore, denote P = {xi|n1(Cxi) ∈ A
′
, i = 1, 2, · · · ,m} and V = A1 ∪ P .

On the other hand, denote
B = B2/B1, where B1 = C(X) ∪ C(Y ), B2 = C(X) ∪ C(Y ).
B = {n1(Cx)|x ∈ B,n1(Cx) ∩B1 = ∅}.
B′ = {n1(Cxj )|xj ∈ B, j = 1, 2, · · · , n}, where B′ satisfies the following three conditions.
(1) For each n1(Cxj ) ∈ B

′
, where j = 1, 2, · · · , n, we have n1(Cxj ) ∈ B.

(2) For each n1(Cxi), n1(Cxj ) ∈ B
′
, where i 6= j; i, j = 1, 2, · · · , n, we have that n1(Cxi) ∩

n1(Cxj ) = ∅.
(3) For each n1(Cx) ∈ B, there exists n1(Cxj ) ∈ B

′
such that n1(Cxj ) = n1(Cx).

Furthermore, denote Q = {xj |n1(Cxj ) ∈ B
′
, j = 1, 2, · · · , n} and W = B1 ∪Q.

According to the approach presented above, we can prove that CS is closed under set intersection and
union. Hence, similar to Proposition 3.2.1, we have the following proposition.

Proposition 4.2.1 Let (U, C) be a maximally unary covering approximation space and X,Y ⊆ U . For
V,W defined above, then the following properties hold.

(1) C(V ) = C(X) ∩ C(Y )

(2) C(V ) = C(X) ∩ C(Y )

(3) C(W ) = C(X) ∪ C(Y )

(4) C(W ) = C(X) ∪ C(Y )
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Remark 4.2.1 (1) If C is a maximally unary covering, for ∀(C(X), C(X)), (C(Y ), C(Y )) ∈ CS ,
we can find subsets V,W ⊆ U such that (C(V ), C(V )) = (C(X), C(X)) ∩ (C(Y ), C(Y )) =
(C(X)∩C(Y ), C(X)∩C(Y )) and (C(W ), C(W )) = (C(X), C(X))∪ (C(Y ), C(Y )) = (C(X)∪
C(Y ), C(X) ∪ C(Y )).

(2) According to the construction of V,W , we have C(X) ∩ C(Y ) ⊆ V ⊆ C(X) ∩ C(Y ) and
C(X) ∪ C(Y ) ⊆W ⊆ C(X) ∪ C(Y ).

(3) For each subset V , we can find a subset W such that V ⊆W .
Similar to Algorithms 1 and 2, we can also construct corresponding algorithms to compute subsets
V,W . Therefore, we won

′
t repeat them here.

Example 4.2.2 LetU = {x1, x2, · · · , x10}, C = {{x1}, {x1, x2, x3}, {x4, x5}, {x4, x5, x6, x7}, {x8},
{x8, x9, x10}}. For X = {x1, x4}, Y = {x4, x5}, we have that C(X) = ∅, C(X) = {x1, x2, x3, x4,
x5, x6, x7}, C(Y ) = ∅, C(Y ) = {x4, x5, x6, x7}. Let V = {x4},W = {x1, x4}, then we have that

(C(V ), C(V )) = (C(X), C(X)) ∩ (C(Y ), C(Y )) · · · (5)

(C(W ), C(W )) = (C(X), C(X)) ∪ (C(Y ), C(Y )) · · · (6)

It is clear that the selections of V,W satisfying equations (5) and (6) are not unique. For X =
{x3, x5}, Y = {x2, x3}, all the selections of V,W obtained probably by Proposition 4.2.1 are given
in Table 5.

Table 5 All the selections of V,W

X,Y V W

{x1, x4} {x4} {x1, x4} {x2, x4}
{x4, x5} {x5} {x3, x4} {x1, x5}

{x6} {x2, x5} {x3, x5}
{x7} {x1, x6} {x2, x6}

{x3, x6} {x1, x7}
{x2, x7} {x3, x7}

Furthermore, for Z = {x1, x4, x8}. Let C = {x1, x4}, D = {x1, x4, x8}, then we have that

(C(C), C(C)) = ((C(X), C(X)) ∪ (C(Y ), C(Y ))) ∩ (C(Z), C(Z)) · · · (7)

(C(D), C(D)) = ((C(X), C(X)) ∩ (C(Y ), C(Y ))) ∪ (C(Z), C(Z)) · · · (8)

Similarly, the selections of C,D which satisfy equations (7) and (8) are also not unique. For
X = {x1, x4}, Y = {x4, x5}, Z = {x1, x4, x8}, all the selections of C,D obtained probably by
Proposition 4.2.1 are given in Table 6.
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Table 6 All the selections of C,D

X,Y, Z C D

{x1, x4} {x1, x4} {x1, x4, x8} {x2, x4, x8}
{x4, x5} {x2, x4} {x3, x4, x8} {x1, x5, x8}
{x1, x4, x8} {x3, x4} {x2, x5, x8} {x3, x5, x8}

{x1, x5} {x1, x6, x8} {x2, x6, x8}
{x2, x5} {x3, x6, x8} {x1, x7, x8}
{x3, x5} {x2, x7, x8} {x3, x7, x8}
{x1, x6} {x1, x4, x9} {x2, x4, x9}
{x2, x6} {x3, x4, x9} {x1, x5, x9}
{x3, x6} {x2, x5, x9} {x3, x5, x9}
{x1, x7} {x1, x6, x9} {x2, x6, x9}
{x2, x7} {x3, x6, x9} {x1, x7, x9}
{x3, x7} {x2, x7, x9} {x3, x7, x9}

{x1, x4, x10} {x2, x4, x10}
{x3, x4, x10} {x1, x5, x10}
{x2, x5, x10} {x3, x5, x10}
{x1, x6, x10} {x2, x6, x10}
{x3, x6, x10} {x1, x7, x10}
{x2, x7, x10} {x3, x7, x10}

5. Algebraic application of the operation properties of CRS

Since Pawlak proposed the theory of rough sets in 1982, the researches of algebraic properties on
rough sets have been started. However, it is still an open problem regarding the algebraic properties
of CRS. As an application on operation properties of CRS, we will investigate some basic algebraic
properties of CRS in this section. Firstly, we review some basic concepts of algebraic theory.

A partial order on a nonempty set L is a binary relation ≤ such that, for all x, y, z ∈ L, (1)x ≤
x, (2)x ≤ y and y ≤ x imply x = y, (3)x ≤ y and y ≤ z imply x ≤ z. A set L equipped with a
partial order is called a partially ordered set. Let S ⊆ L, an element x ∈ L is an upper bound of S if
s ≤ x for all s ∈ S. Meanwhile, a lower bound can be defined dually. The set of all upper bounds of
S is denoted by Su and the set of all lower bounds of S is denoted by Sl. If Su has a least element
x, then x is called the least upper bound of S. Dually, if Sl has a greatest element x, then x is called
the greatest lower bound of S. In what follows, we will denote by ∨S the least upper bound of S and
denote by ∧S the greatest lower bound of S when they exist. In particular, we will write x∨y in place
of ∨{x, y} when it exists, and x ∧ y in place of ∧{x, y} when it exists.
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Definition 5.1 A partially ordered set L is a lattice, if a ∨ b ∈ L and a ∧ b ∈ L, for all a, b ∈ L.

Definition 5.2 A lattice L is a distribute lattice, if a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) =
(a ∧ b) ∨ (a ∧ c), for all a, b, c ∈ L.

Definition 5.3 A distribute lattice 〈L,∨,∧,∼〉 is a soft algebra, if for ∀a, b ∈ L, the following three
properties are satisfied:

(1) a ∨ 0 = a, a ∧ 0 = 0, a ∨ 1 = 1, a ∧ 1 = a;
(2) ∼ (∼ a) = a;
(3) ∼ (a ∨ b) = (∼ a) ∧ (∼ b),∼ (a ∧ b) = (∼ a) ∨ (∼ b).

Definition 5.4 A lattice 〈L,∨,∧,∼, 0〉 is a pseudo-complement lattice, if for each a ∈ L, there must
exist a∗ ∈ L such that a∗ is the pseudo-complement element of a. i.e., the following two properties
are satisfied:

(1) a ∨ a∗ = 0;
(2) For each b ∈ L, if a ∨ b = 0, then we have that b ≤ a∗;

In what follows, based on the operation properties of CRS, we will discuss the algebraic properties of
CRS.

5.1. Algebraic properties of the first type of CRS

In this section, we will discuss the algebraic properties of the first type of CRS. Let (U, C) be a
minimally unary covering approximation space, and for ∀x, y ∈ U , we have Kmin

x = Kmin
y or

Kmin
x ∩ Kmin

y = ∅. In order to make the discussion more accurate and consistent, we write “∪” in
place of “∨”, and “∩” in place of “∧”. Then, we have the following conclusions.

Proposition 5.1.1 ( CF ,∪,∩) is a lattice.

Proof:
It is clear. ut

Proposition 5.1.2 ( CF ,∪,∩) is a distribute lattice.

Proof:
For ∀( C(X), C(X) ), ( C(Y ), C(Y ) ), ( C(Z), C(Z) ) ∈ CF , we have that

( C(X), C(X) ) ∩ ( ( C(Y ), C(Y ) ) ∪ ( C(Z), C(Z) ) )

= (( C(X), C(X) ) ∩ ( C(Y ), C(Y ) )) ∪ (( C(X), C(X) ) ∩ ( C(Z), C(Z) ))

( C(X), C(X) ) ∪ ( ( C(Y ), C(Y ) ) ∩ ( C(Z), C(Z) ) )

= (( C(X), C(X) ) ∪ ( C(Y ), C(Y ) )) ∩ (( C(X), C(X) ) ∪ ( C(Z), C(Z) ))

Thus the proposition hold. ut

Let (∅, ∅) = 0, (U,U) = 1, we have the following conclusions.

Proposition 5.1.3 ( CF ,∪,∩,∼) is a soft algebra.
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Proof:
For ∀( C(X), C(X) ), ( C(Y ), C(Y ) ) ∈ CF , we have that

(1) ( C(X), C(X) ) ∪ 0 = ( C(X), C(X) );

( C(X), C(X) ) ∩ 0 = 0;

( C(X), C(X) ) ∪ 1 = 1;

( C(X), C(X) ) ∩ 1 = ( C(X), C(X) ).

(2) ∼ (∼ ( C(X), C(X) )) =∼ (∼ C(X),∼ C(X)) = ( C(X), C(X) ).

(3) ∼ (( C(X), C(X) ) ∩ ( C(Y ), C(Y ) ))

=∼ (C(X) ∩ C(Y ), C(X) ∩ C(Y ))

= (∼ (C(X) ∩ C(Y )),∼ (C(X) ∩ C(Y )))

= (∼ (C(X))∪ ∼ (C(Y )),∼ (C(X))∪ ∼ (C(Y )))

= (∼ C(X),∼ C(X)) ∪ (∼ C(Y ),∼ C(Y ))

= (∼ (C(X), C(X)) ∪ (∼ (C(Y ), C(Y ))).

Similarly, we have that

∼ ((C(X), C(X)) ∪ (C(Y ), C(Y ))) = (∼ (C(X), C(X)) ∩ (∼ (C(Y ), C(Y ))).

Hence, it can be known that ( CF ,∪,∩,∼) is a soft algebra. ut

For each ( C(X), C(X) ) ∈ CF , let ( C(X), C(X) )∗ = ( ∼ C(X),∼ C(X) ), then we have
the following conclusion.

Proposition 5.1.4 ( CF ,∪,∩,∼, 0) is a pseudo-complement lattice.

Proof:
For each ( C(X), C(X) ) ∈ CF , we have that

(1) ( C(X), C(X) ) ∩ ( C(X), C(X) )∗ = (( C(X), C(X) ) ∩ ( ∼ C(X),∼ C(X) )) =
( C(X) ∩ (∼ C(X)), C(X) ∩
(∼ C(X)) ) = (∅, ∅) = 0

(2) For ∀( C(X), C(X) ), ( C(Y ), C(Y ) ) ∈ CF , let ( C(X), C(X) ) ∩ ( C(Y ), C(Y ) ) =
0. Then ( C(X) ∩ C(Y ), C(X) ∩ C(Y ) ) = 0. We have that C(X) ∩ C(Y ) = ∅. That is to
say that C(Y ) ⊆∼ C(X). Since C(X) ⊆ C(X), then we have that C(Y ) ⊆∼ C(X). Hence
( C(Y ), C(Y ) ) ⊆ ( ∼ C(X),∼ C(X) )) = ( C(X), C(X) )∗. Therefore, ( CF ,∪,∩,∼, 0) is a
pseudo-complement lattice. ut



Q. Kong and W. Xu / Operation Properties and Algebraic Application of Covering Rough Sets 403

5.2. Algebraic properties of the second type of CRS

In this section, we will study the algebraic properties of the second type of CRS. Let (U, C) be a max-
imally unary covering approximation space. The proofs of the following propositions can straightfor-
wardly follow by those of propositions listed in Subsection 5.1 and are thus omitted. Hence, we have
the following conclusions.

Proposition 5.2.1 ( CS ,∪,∩) is a lattice.

Proposition 5.2.2 ( CS ,∪,∩) is a distribute lattice.

Proposition 5.2.3 ( CS ,∪,∩,∼) is a soft algebra.

Proposition 5.2.4 ( CS ,∪,∩,∼, 0) is a pseudo-complement lattice.

6. Conclusion

The theory of rough sets based on equivalence relations is an excellent tool to handle granularity of
revealing knowledge hidden in information systems. The covering rough set model is an important
generalization to the classical rough set model. It is more useful in dealing with uncertainty and gran-
ularity. In this paper, we further studied two types of CRS models. We first research the properties
of covering approximation operators. To find more excellent results, we study the properties of cov-
ering approximation operators with respect to minimally and maximally unary coverings. In addition,
we propose the concepts of intersection, union and complement of CRS and study some basic oper-
ation properties. Finally, as an application of the operation properties of CRS, some basic algebraic
properties of CRS are explored.

There are several issues in covering-based rough sets deserving further research. For example, the
results on topological properties of CRS are still fewer. Based on the results listed in this paper, it will
be possible to investigate the topological properties of CRS. In addition, there are lots of CRS models
based on non-dual approximation operators. In these models, some basic and important operation
properties need further study. We will research these issues in the near future.
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